≜UCL

Square Span Programs with Applications to Succinct NIZK Arguments

George Danezis, University College London Cédric Fournet, Microsoft Research Jens Groth, University College London Markulf Kohlweiss, Microsoft Research

Non-interactive zero-knowledge argument

Applications

NIZK arguments guarantee honesty (soundness), yet also preserve privacy (zeroknowledge)

Our contribution

- NIZK argument
 - Perfect correctness
 - Perfect zero-knowledge
 - Computational soundness
 - Knowledge extractor assumptions using pairings
- Conceptually simple
 - New characterization of NP as Square Span Programs
- Small size
 - Four group element proofs

Technical path

• Relation R_L for NP-language L given by circuit C_R

- Characterize satisfiability of C_R as constraints $\vec{a}V \in \{0,2\}^d$
- Rewrite constraints as square span program t(x) divides $(\sum a_i v_i(x))^2 1$

Example

- Consider circuit with single XOR-gate $a_0 = a_1 \oplus a_2$
- Satisfiability corresponds to the constraints $a_1, a_2 \in \{0,1\}$ $1 + a_1 + a_2 \in \{0,2\}$
- Which we can write

$$\vec{a}V = (1, a_1, a_2) \begin{pmatrix} 0 & 0 & 1 \\ 2 & 0 & 1 \\ 0 & 2 & 1 \end{pmatrix} \in \{0, 2\}^3$$

• This is satisfied if and only if for all columns V_j $(\vec{a}V_i - 1)^2 = 1$

Example continued

Define

$$t(x) = (x + 1)(x - 1)x \quad v_0(x) = -x^2$$

$$v_1(x) = 1 - x \qquad v_2(x) = 1 + x$$

- Chosen such that
 - $\begin{pmatrix} v_0(-1) & v_0(1) & v_0(0) \\ v_1(-1) & v_1(1) & v_1(0) \\ v_2(-1) & v_2(1) & v_2(0) \end{pmatrix} = \begin{pmatrix} -1 & -1 & 0 \\ 2 & 0 & 1 \\ 0 & 2 & 1 \end{pmatrix}$
- Then $(\vec{a}V_j 1)^2 = 1$ for all *j* if and only if t(x) divides $(v_0(x) + a_1v_1(x) + a_2v_2(x))^2 - 1$
- Using techniques presented later we can use the

Characterizing circuit satisfiability as a set of integer constraints

 Consider a circuit with wires a₀, ..., a_m

- The circuit is satisfiable if all wires a_i ∈ {0,1}, and they respect all the gates, and the output is 1
- Write the wires as a vector $\vec{a} = (a_0, a_1, \dots, a_m)$ The condition $a_i \in \{0,1\}$ can be written $\vec{a}I \in \{0,1\}^{m+1}$
 - Could omit trivial checks, e.g., we know $a_0 = 1$ for satisfied circuit and we may know some inputs $a_1 = a_2 \in \{0, 1\}$

Linearization of the gates

- Fan-in 2 gates can be linearized
 - For the XOR-gate we have for $a, b, c \in \{0,1\}$ $a \oplus b = c$ if and only if $a + b + c \in \{0,2\}$
 - For the NAND-gate we have for $a, b, c \in \{0,1\}$ $\neg(a \land b) = c$ if and only if $a + b + 2c - 2 \in \{0,1\}$
- In our paper we show that by multiplying some equations by 2, we can write all non-trivial fan-in 2 gates on the form αa + βb + γc + δ ∈ {0,2}

Characterizing circuit satisfiability as constraints on an affine map

- We write the gate equations in a matrix *G* such that the wires respect the *n* gates if and only if *d*G ∈ {0,2}ⁿ
- Combined with the constraint *d l* ∈ {0,1}^{*m*+1} we get the circuit is satisfiable if and only if
 d V = *d*(2*I*|*G*) ∈ {0,2}<sup>*m*+*n*+1</sub>
 </sup>
- The constants are small, so the equivalence with circuit satisfiability also holds over 7 for n > 8

Technical path

• Relation R_L for NP-language L given by circuit C_R

- Characterize satisfiability of C_R as constraints $\vec{a}V \in \{0,2\}^d$
- Rewrite constraints as square span program t(x) divides $(\sum a_i v_i(x))^2 1$

Square span program

 We say a square span program accepts a language if it accepts the elements in the language

From affine map constraints to SSPs

Earlier

$$a_1 = a_2$$

$$a_3 = a_4 = a_4$$

$$dV \in \{0,2\}^d \text{ over } Z_p$$

- Pick distinct points $r_1, \ldots, r_d \in \mathbf{Z}_p$
- Define $t(x) = \prod (x r_j)$

• Define
$$v'_0(x), v_1(x), ..., v_m(x)$$
 such that
 $\begin{pmatrix} v_0'(r_1) & ... & v_0'(r_d) \\ \vdots & \ddots & \vdots \\ v_m(r_1) & ... & v_m(r_d) \end{pmatrix} = V$
and $v_0(x) = v'_0(x) - 1$

Why does the square span program work?

- We want for all columns *j* that $\vec{a}V_j \in \{0,2\}$ or equivalently that $\vec{a}V_j - 1 \in \{-1,1\}$ (over Z_p)
- By the choice of polynomials $v_0(x), ..., v_m(x)$ we have $\sum a_i v_i(r_j) = \vec{a}V_j a_0 1 = \vec{a}V_j 1$
- This gives us the condition $(\sum a_i v_i(r_j))^2 = 1$
- So $\vec{a}V \in \{0,2\}^d$ if and only if all r_j are roots in the polynomial $(\sum a_i v_i(x))^2 1$
- I.e., $t(x) = \prod (x r_j)$ divides $(\sum a_i v_i(x))^2 1$

Technical path

• Relation R_L for NP-language L given by circuit C_R

- Characterize satisfiability of C_R as constraints $\vec{a}V \in \{0,2\}^d$
- Rewrite constraints as square span program t(x) divides $(\sum a_i v_i(x))^2 1$

Prime order bilinear groups

- Gen (1^k) generates $(p, \mathbb{G}, \widehat{\mathbb{G}}, \mathbb{G}_T, e)$
- G, \widehat{G}, G_T finite cyclic groups of prime order p
- Pairing $e: G \times \widehat{G} \to G_T$

$$- e(U^{a}, \widehat{V}^{b}) = e(U, \widehat{V})^{ab}$$

$$-\mathbb{G} = \langle G \rangle, \ \widehat{\mathbb{G}} = \langle H \rangle, \ \mathbb{G}_T = \langle e(G, \widehat{G}) \rangle$$

 Deciding group membership, group operations, and bilinear pairing efficiently computable

- Statement: (a_1, \dots, a_ℓ) accepted by SSP
- Common reference string: $\beta, s \leftarrow \mathbf{Z}_p$ $(G, \widehat{G}, ..., G^{s^d}, \widehat{G}^{s^d}, G^{\beta v_{\ell+1}(s)}, ..., G^{\beta v_m(s)}, G^{\beta t(s)}, \widetilde{G}, \widetilde{G}^{\beta})$
- Argument: Pick $\delta \leftarrow \mathbf{Z}_p$ and compute h(x) such that $h(x)t(x) = \left(\sum a_i v_{i(x)} + \delta t(x)\right)^2 1$

Compute $\pi = (H, V_w, B_w, \hat{V})$ as $B_w = G^{\beta(\sum_{i>\ell} a_i v_i(s) + \delta t(s))}$ $H = G^{h(s)}$ $V_w = G^{\sum_{i>\ell} a_i v_i(s) + \delta t(s)}$ $\hat{V} = \hat{G}^{\sum a_i v_i(s) + \delta t(s)}$

• Verification: Compute $V = G^{\sum_{i \le \ell} a_i v_i(s)} V_w$ and check $e(V, \hat{G}) = e(G, \hat{V})$ $e(V_w, \tilde{G}^\beta) = e(B_w, \tilde{G})$

Succinct NIZK argument

- Perfect correctness
- Perfect zero-knowledge
- Computational soundness

 Assuming d-PKE, d-PDH, and
- Succinct
 - 4 group elements ≈ 160 bytes $\frac{1}{2}$
- Efficient
 - Prover: $O(d \log d)$ multiplications and 3 exponentiations
 - Verifier: ℓ exponentiations and 6 pairings \approx 6ms

Pinocchio

Argument: 8 elements Computation: Better when statements involve additions or multiplications instead of fan-in 2 gates since it is based on quadratic arithmetic programs

Summary

- Introduced square span programs

 Conceptually simple type of quadratic span programs
- Showed they are NP-complete

Succinct NIZK argument